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Abstract

A three-dimensional (3-D) method of analysis is presented for determining the free vibration frequencies
and mode shapes of thick, hyperboloidal shells of revolution. Unlike conventional shell theories, which are
mathematically two-dimensional (2-D), the present method is based upon the 3-D dynamic equations of
elasticity. Displacement components ur, uy, and uz in the radial, circumferential, and axial directions,
respectively, are taken to be sinusoidal in time, periodic in y, and algebraic polynomials in the r and z

directions. Potential (strain) and kinetic energies of the hyperboloidal shells are formulated, and the Ritz
method is used to solve the eigenvalue problem, thus yielding upper bound values of the frequencies by
minimizing the frequencies. As the degree of the polynomials is increased, frequencies converge to the exact
values. Convergence to four-digit exactitude is demonstrated for the first five frequencies of the
hyperboloidal shells of revolution. Numerical results are tabulated for 18 configurations of completely free
hyperboloidal shells of revolution having two different shell thickness ratios, three variant axis ratios, and
three types of shell height ratios. Poisson’s ratio (n) is fixed at 0.3. Comparisons are made among the
frequencies for these hyperboloidal shells and ones which are cylindrical or nearly cylindrical (small
meridional curvature). The method is applicable to thin hyperboloidal shells, as well as thick and very
thick ones.
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1. Introduction

Hyperboloidal shell types of structures have been used widespread both in industrial and public
buildings; for example, cooling towers, water towers, TV towers, supports of electric power
transmission lines, reinforced concrete water vessels, high factory chimneys, and so forth, since
they give rise to optimum conditions for good aerodynamics, strength, and stability.
A vast published literature exists for free vibrations of shells. The monograph of Leissa [1]

summarized approximately 1000 relevant publications world-wide through the 1960s. Almost all
of these dealt with shells of revolution (e.g., circular cylindrical, conical, spherical). Among them
were three references [2–4] considering hyperboloidal shells of revolution (see p. 412 in Ref. [1]). A
recent review article by Krivoshapko [5] describes some additional research on free vibrations of
hyperboloidal shells of revolution for the period 1975–2000.
However, these analyses [2–4, 6–22] were based upon shell theory, which is mathematically two-

dimensional (2-D). That is, for thin shells one assumes the Kirchhoff hypothesis that normals to
the shell middle surface remain normal to it during deformations (vibratory, in this case), and
unstretched in length. This yields an eighth-order set of partial differential equations of motion.
For hyperboloidal shells they involve variable coefficients, making them quite difficult to solve.
Even so, conventional shell theory is only applicable to thin shells. A higher order shell theory

could be derived, which considers the effects of shear deformation and rotary inertia, and would
be useful for the low-frequency modes of moderately thick shells. Such a theory would also be
2-D. But for hyperboloidal shells the resulting equations would be very complicated.
Three-dimensional (3-D) analysis of structural elements has long been a goal of those who work

in the field. With the current availability of computers of increased speed and capacity, it is now
possible to perform 3-D structural analyses of bodies to obtain accurate values of static
displacements, free vibration frequencies and mode shapes, and buckling loads and mode shapes.
In the present work, hyperboloidal shells of revolution are analyzed by a 3-D approach. Instead

of attempting to solve equations of motion, an energy approach is followed which, as sufficient
freedom is given to the three displacement components, yields frequency values as close to the
exact ones as desired. To evaluate the energy integrations over the shell volume exactly (not
numerically), displacements and strains are expressed in terms of the circular cylindrical
coordinates, instead of related 3-D shell coordinates which are normal and tangential to the shell
midsurface. Results are obtained for hyperboloidal shells of revolution with constant thickness
along the radial direction (r) and completely free. These data serve as benchmarks against which
other approximate methods (e.g., finite elements, finite differences) and other improved 2-D shell
theories may be tested.
2. Method of analysis

A representative cross section of hyperboloidal shells of revolution of constant thickness (h) in
the radial direction (r), and height H ð¼ Ht þ Hb) of the shell in the axial direction (z), where Ht

and Hb are the lengths from the r-axis to the top and bottom ends of the shell, respectively, is
shown in Fig. 1. If the shell thickness is defined as normal thickness to the midsurface of the shell,
this shell has a thickness variation in the meridional direction. The lengths of major and minor
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Fig. 1. A representative hyperboloidal shell of revolution with the cylindrical coordinate system (r, y, z).
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axes of the mid-surface of the hyperboloidal shell are 2a and 2b, respectively, and so slopes of
asymptotes are �b=a: The cylindrical coordinate system (r, y, z), also shown in the figure, is used
in the analysis, where y is the circumferential angle. The equation of the hyperboloidal mid-
surface is ðr=aÞ2 � ðz=bÞ2 ¼ 1: Thus, the domain of the shell is given by

a

b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ b2

p
�

h

2
prp

a

b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ b2

p
þ

h

2
; 0pyp2p; �HtpzpHb: ð1Þ

Utilizing tensor analysis (cf. Ref. [23]), the three equations of motion in the cylindrical coordinate
system (r, y, z) are found to be

srr;r þ srz;z þ
1

r
ðsrr � syy þ sry;yÞ ¼ r €ur; ð2aÞ

sry;r þ syz;z þ
1

r
ð2sry þ syy;yÞ ¼ r €uy; ð2bÞ

srz;r þ szz;z þ
1

r
ðsrz þ syz;yÞ ¼ r €uz; ð2cÞ

where the sij are the normal (i ¼ j) and shear (iaj) stress components; ur, uy, and uz are the
displacement components in the r, y, and z directions, respectively; r is mass density per unit
volume; the commas indicate spatial derivatives; and the dots denote time derivatives.
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The well-known relationships between the tensorial stresses (sij) and strains (eij) of isotropic,
linear elasticity are

sij ¼ l�dij þ 2G�ij; ð3Þ

where l and G are the Lamé parameters, expressed in terms of Young’s modulus (E) and Poisson’s
ratio (n) for an isotropic solid as

l ¼
En

ð1þ nÞð1� 2nÞ
; G ¼

E

2ð1þ nÞ
; ð4Þ

� � �rr þ �yy þ �zz is the trace of the strain tensor, and dij is Kronecker’s delta.
The 3-D tensorial strains (eij) are found to be related to the three displacements ur, uy, and uz, by

(cf. Ref. [23])

�rr ¼ ur;r; �yy ¼
uy;y þ ur

r
; �zz ¼ uz;z; ð5a2cÞ

�ry ¼
1

2
uy;r þ

ur;y � uy

r

h i
; �rz ¼

1
2
ður;z þ uz;rÞ; �yz ¼

1

2
uy;z þ

uz;y

r

h i
: ð5d2fÞ

Substituting Eqs. (3) and (5) into Eq. (2), one obtains a set of second-order partial differential
equation in ur, uy, and uz governing free vibrations. However, in the case of hyperboloidal shells,
exact solutions are intractable because of the variable coefficients that appear in many terms.
Alternatively, one may approach the problem from an energy perspective.
During vibratory deformation of the body, its strain (potential) energy (V) is the integral over

the domain (O):

V ¼ 1
2

Z
O
ðsrr�rr þ syy�yy þ szz�zz þ 2sry�ry þ 2srz�rz þ 2syz�yzÞrdrdydz: ð6Þ

Substituting Eqs. (3) and (5) into Eq. (6) results in the strain energy in terms of the three
displacements:

V ¼ 1
2

Z
O
½lð�rr þ �yy þ �zzÞ

2
þ 2Gf�2rr þ �2yy þ �2zz þ 2ð�2ry þ �2rz þ �2yzÞg�rdrdydz; ð7Þ

where the tensorial strains eij are expressed in terms of the three displacements by Eq. (5).
The kinetic energy (T) is simply

T ¼ 1
2

Z
O
rð _u2

r þ _u2y þ _u2zÞrdrdydz: ð8Þ

For mathematical convenience, the radial r and axial z coordinates are made dimensionless as
c � r=h and z � z=H: Thus, the ranges of the nondimensional cylindrical coordinates (c, y, z) are
given by

c1ðzÞpcpc2ðzÞ; 0pyp2p; �
Ht

H
pzp

Hb

H
; ð9Þ
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where

c1ðzÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðH�zÞ2 þ k2

q
kh�

�
1

2
; ð10aÞ

c2ðzÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðH�zÞ2 þ k2

q
kh�

þ
1

2
ð10bÞ

and H�ð� H=aÞ and h�ð� h=aÞ are the nondimensional height and thickness of the shell,
respectively, and kð� b=aÞ is the axis ratio (and asymptote slope).
For the free, undamped vibration, the time (t) response of the three displacements is sinusoidal

and, moreover, the circular symmetry of the body allows the displacements to be expressed by

urðc; y; z; tÞ ¼ Urðc; zÞ cos ny sinðot þ aÞ; ð11aÞ

uyðc; y; z; tÞ ¼ Uyðc; zÞ sin ny sinðot þ aÞ ð11bÞ

uzðc; y; z; tÞ ¼ Uzðc; zÞ cos ny sinðot þ aÞ; ð11cÞ

where Ur, Uy, and Uz are displacement functions of c and z, o is a natural frequency, and a is an
arbitrary phase angle determined by the initial conditions. The circumferential wave number is
taken to be an integer (n=0, 1, 2, 3,y,N), to ensure periodicity in y. Then Eq. (11) accounts for
all free vibration modes except for the torsional ones. These modes arise from an alternative set of
solutions which are the same as in Eq. (11), except that cos ny and sin ny are interchanged. For
n40; this set duplicates the solutions of Eq. (11), with the symmetry axes of the mode shapes
being rotated. But for n ¼ 0 the alternative set reduces to ur ¼ uz ¼ 0; uy ¼ U�

yðr; zÞ sinðot þ aÞ;
which corresponds to the torsional modes. The displacements uncouple by circumferential
wavenumber (n), leaving only coupling in r and z.
The Ritz method uses the maximum potential (strain) energy (Vmax) and the maximum kinetic

energy (Tmax) functionals in a cycle of vibratory motion. The functionals are obtained by setting
sin2ðot þ aÞ and cos2ðot þ aÞ equal to unity in Eqs. (7) and (8) after the displacements (11) are
substituted, and by using the nondimensional coordinates c and z as follows:

Vmax ¼
GH

2

Z Hb=H

�Ht=H

Z c2

c1

l
G
ðk1 þ k2 þ k3Þ

2
þ 2ðk21 þ k22 þ k23Þ þ k24

� �
G1 þ ðk25 þ k26ÞG2

	 

cdcdz;

ð12Þ

Tmax ¼
rHh2o2

2

Z Hb=H

�Ht=H

Z c2

c1

½ðU2
r þ U2

zÞG1 þ U2
yG2�cdcdz; ð13Þ

where

k1 �
Ur þ nUy

c
; k2 �

h�

H� Uz;z; k3 � Ur;c; ð14aÞ

k4 �
h�

H� Ur;z þ Uz;c; k5 �
Uy þ nUr

c
� Uy;c; k6 �

nUz

c
�

h�

H� Uy;z ð14bÞ
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and G1 and G2 are constants, defined by

G1 �

Z 2p

0

cos2 nydy ¼
2p if n ¼ 0;

p if nX1;

�
G2 �

Z 2p

0

sin2 nydy ¼
0 if n ¼ 0;

p if nX1:

�
ð15Þ

From Eq. (4), it is seen that the nondimensional constant l/G in Eq. (12) involves only n; i.e.,

l
G

¼
2n

1� 2n
: ð16Þ

The displacement functions Ur, Uy, and Uz in Eq. (11) are further assumed as algebraic
polynomials,

Urðc; zÞ ¼ Zrðc; zÞ
XK

k¼0

XL

l¼0

Aijc
izj; ð17aÞ

Uyðc; zÞ ¼ Zyðc; zÞ
XK

k¼0

XL

l¼0

Bklc
kzl ; ð17bÞ

Uzðc; zÞ ¼ Zzðc; zÞ
XM

m¼0

XN

n¼0

Cmnc
mzn

ð17cÞ

and similarly for U�
y; where i, j, k, l, m, and n are integers; I, J, K, L, M, and N are the highest

degrees taken in the polynomial terms; Aij ; Bkl and Cmn are arbitrary coefficients to be determined,
and the Z are functions depending upon the geometric boundary conditions to be enforced. For
example: (1) completely free: Zr ¼ Zy ¼ Zz ¼ 1; (2) bottom end (z ¼ Hb) fixed, remaining
boundaries free: Zr ¼ Zy ¼ Zz ¼ z� Hb=H; (3) top end (z ¼ �Ht) fixed, remaining boundaries
free: Zr ¼ Zy ¼ Zz ¼ zþ Ht=H; (4) both ends fixed: Zr ¼ Zy ¼ Zz ¼ ðz� Hb=HÞðzþ Ht=HÞ:
The functions of Z shown above impose only the necessary geometric constraints. Together with

the algebraic polynomials in Eq. (17), they form function sets which are mathematically complete
(cf., Ref. [24] pp. 266–268). Thus, the function sets are capable of representing any 3-D motion of
the body with increasing accuracy as the indices I, J, y, N are increased. In the limit, as sufficient
terms are taken, all internal kinematic constraints vanish, and the functions (17) will approach the
exact solution as closely as desired.
The eigenvalue problem is formulated by minimizing the free vibration frequencies with respect

to the arbitrary coefficients Aij, Bkl and Cmn, thereby minimizing the effects of the internal
constraints present, when the function sets are finite. This corresponds to the following
equations [25]:

q
qAij

ðVmax � TmaxÞ ¼ 0; i ¼ 0; 1; 2; :::; I ; j ¼ 0; 1; 2; :::; J; ð18aÞ

q
qBkl

ðVmax � TmaxÞ ¼ 0; k ¼ 0; 1; 2; :::;K ; l ¼ 0; 1; 2; :::;L; ð18bÞ

q
qCmn

ðVmax � TmaxÞ ¼ 0; m ¼ 0; 1; 2; :::;M; n ¼ 0; 1; 2; :::;N: ð18cÞ
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Eq. (18) yields a set of (I+1)(J+1)+(K+1)(L+1)+(M+1)(N+1) linear, homogeneous,
algebraic equations in the unknowns Aij, Bkl and Cmn. For a nontrivial solution, the determinant
of the coefficient matrix is set equal to zero, which yields the frequencies (eigenvalues). These
frequencies are upper bounds on the exact values. The mode shape (eigenfunction) corresponding
to each frequency is obtained, in the usual manner, by substituting each o back into the set of
algebraic equations, and solving for the ratios of coefficients.
3. Convergence studies

To establish the accuracy of frequencies obtained by the procedure described above, it is
necessary to conduct some convergence studies to determine the number of terms required
in the power series of Eq. (17). A convergence study is based upon the fact that all the fre-
quencies obtained by the Ritz method should converge to their exact values in an upper bound
manner when the mathematically complete set of polynomials in Eq. (17) are used. If the results
were not to converge properly, or to converge too slowly, it is likely that the assumed
displacements may be poor choices, or be missing some functions from a minimal complete set of
polynomials.
Table 1 is such a study for a completely free, hyperboloidal shell of revolution with

b=a ¼ 1; Hb=a ¼ 4; Ht=Hb ¼ 0; and h=a ¼ 0:2; depicted as the first configuration in Fig. 2. The
table lists the first five nondimensional frequencies in oa

ffiffiffiffiffiffiffiffiffi
r=G

p
with n ¼ 0:3 for bending modes

(n=2).
To make the study of convergence less complicated, equal numbers of polynomial terms were

taken in both the r (or c) coordinate (i.e., I=K=M) and z (or z) coordinate (i.e., J=L=N),
although some computational optimization could be obtained for some configurations and some
mode shapes by using an unequal number of polynomial terms.
The symbols TR and TZ in the table indicate the total numbers of polynomial terms used in the

r (or c) and z (or z) directions, respectively. Note that the frequency determinant order DET is
related to TR and TZ as follows:

DET ¼

TR
 TZ for torsional modes ðn ¼ 0Þ;

2
 TR
 TZ for axisymmetric modes ðn ¼ 0Þ;

3
 TR
 TZ for general modes ðnX1Þ:

8><
>: ð19Þ

Table 1 shows the monotonic convergence of all five frequencies as TR (= I+1, K+1
and M+1 in Eq. (17)) is increased, as well as TZ (=J+1, L+1 and N+1 in Eq. (17)). One sees,
for example, that the fundamental (i.e., lowest) nondimensional frequency oa

ffiffiffiffiffiffiffiffiffi
r=G

p
con-

verges to four digits (0.02871) when as few as (5
 12)=60 terms are used, which results in
DET=180. Moreover, this accuracy requires using at least five terms through the radial (TR=5)
and twelve through the axial direction (TZ=12). Numbers in underlined, bold-face type in
Table 1 are the most accurate values (i.e., least upper bounds) achieved with the smallest
determinant sizes.
Table 2 is a similar convergence study for the bending modes for n=2 of a thicker,

hyperboloidal shell of revolution having less meridional curvature, with b=a ¼ 3; Ht=Hb ¼ 1;
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Table 1

Convergence of frequencies in oa
ffiffiffiffiffiffiffiffiffi
r=G

p
of a completely free hyperboloidal shell of revolution for the five lowest

bending modes (n=2) with b=a ¼ 1; h=a ¼ 0:2; Hb=a ¼ 4; and Ht=Hb ¼ 0 (n ¼ 0:3)

TR TZ DET 1 2 3 4 5

2 2 12 0.06729 0.5756 0.8806 1.127 1.377

2 4 24 0.03690 0.1621 0.4344 0.6912 0.9963

2 6 36 0.03244 0.1452 0.3854 0.6346 0.7071

2 8 48 0.03190 0.1430 0.3799 0.5744 0.6903

2 10 60 0.03177 0.1428 0.3797 0.5675 0.6885

2 12 72 0.03173 0.1428 0.3796 0.5672 0.6885

3 2 18 0.05364 0.1980 0.6597 0.7940 1.040

3 4 36 0.03158 0.1286 0.3558 0.5691 0.6934

3 6 54 0.02932 0.1219 0.3323 0.4840 0.6787

3 8 72 0.02892 0.1206 0.3310 0.4556 0.6236

3 10 90 0.02880 0.1202 0.3307 0.4513 0.6059

3 12 108 0.02877 0.1202 0.3306 0.4511 0.6023

4 2 24 0.04458 0.1809 0.4750 0.6979 1.009

4 4 48 0.03025 0.1239 0.3360 0.5263 0.6886

4 6 72 0.02904 0.1209 0.3312 0.4568 0.6386

4 8 96 0.02881 0.1202 0.3306 0.4513 0.6076

4 10 120 0.02874 0.1201 0.3305 0.4506 0.6012

4 12 144 0.02872 0.1200 0.3304 0.4506 0.6006

5 2 30 0.04164 0.1623 0.4535 0.6951 0.8591

5 4 60 0.02962 0.1226 0.3320 0.4752 0.6753

5 6 90 0.02890 0.1205 0.3308 0.4523 0.6182

5 8 120 0.02876 0.1201 0.3305 0.4508 0.6018

5 10 150 0.02874 0.1201 0.3305 0.4506 0.6012

5 12 180 0.02871 0.1200 0.3304 0.4505 0.6005

5 13 195 0.02871 0.1200 0.3303 0.4505 0.6003

6 2 36 0.04016 0.1572 0.4183 0.6649 0.7255

6 4 72 0.02920 0.1215 0.3313 0.4590 0.6484

6 6 108 0.02882 0.1203 0.3306 0.4510 0.6051

6 8 144 0.02874 0.1201 0.3305 0.4506 0.6010

6 10 180 0.02872 0.1200 0.3304 0.4506 0.6006

6 12 216 0.02871 0.1200 0.3303 0.4505 0.6005

7 2 42 0.03877 0.1560 0.4117 0.6497 0.7075

7 4 84 0.02904 0.1209 0.3309 0.4534 0.6245

7 6 126 0.02878 0.1201 0.3305 0.4508 0.6017

7 8 168 0.02873 0.1200 0.3304 0.4506 0.6006

7 10 210 0.02872 0.1200 0.3304 0.4505 0.6005

TR=Total numbers of polynomial terms used in the r (or c) direction.
TZ=Total numbers of polynomial terms used in the z (or z) direction.
DET=Frequency determinant order.

J.-H. Kang, A.W. Leissa / Journal of Sound and Vibration 282 (2005) 277–296284
h=a ¼ 0:4; and Hb=a ¼ 4; depicted as the last configuration in Fig. 4. One sees that the
fundamental frequency (0.2471) requires using at least (TR, TZ)=(5, 12) and DET=180 to
obtain exactitude to four significant figures.
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Fig. 2. Hyperboloidal shells of revolution for b=a ¼ 1 and Hb=a ¼ 4:
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Convergence studies made for the torsional (n ¼ 0T ) and axisymmetric (n ¼ 0A) modes,
which are not included here, show a similar trend, with DET=60 and 120, respectively, from
(TR, TZ)=(5, 12) being needed for the first frequency to be converged up to four significant
figures.
To calculate all the numerical results presented in this paper, (TR, TZ)=(5, 13) is used.
4. Numerical results and discussion

Tables 3–5 present nondimensional frequencies in oa
ffiffiffiffiffiffiffiffiffi
r=G

p
of completely free, hyper-

boloidal shells of revolution for b=a ¼ 1 (Table 3), 2 (Table 4), and 3 (Table 5), and Hb=a ¼ 4;
having three types of top and bottom height ratios of Ht=Hb ¼ 0; 1/4, and 1, and two diffe-
rent thickness ratios of h=a ¼ 0:2 and 0.4. Poisson’s ratio (n) was taken to be 0.3. These
configurations corresponding to Tables 3–5 are depicted in Figs. 2–4, respectively. Thirty-five
frequencies are given for each configuration, which arise from seven circumferential wave
numbers (n=0T, 0A, 1, 2, 3, 4, 5) and the first five modes (s=1, 2, 3, 4, 5) for each value of n, where
the superscripts T and A indicate torsional and axisymmetric modes, respectively. The first five
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Table 2

Convergence of frequencies in oa
ffiffiffiffiffiffiffiffiffi
r=G

p
of a completely free hyperboloidal shell of revolution for the five lowest

bending modes (n=2) with b=a ¼ 3; h=a ¼ 0:4; Hb=a ¼ 4; and Ht=Hb ¼ 1 (n ¼ 0:3)

TR TZ DET 1 2 3 4 5

2 2 12 0.4727 0.6217 1.543 1.631 2.492

2 4 24 0.2824 0.2999 0.6341 0.8836 1.465

2 6 36 0.2655 0.2741 0.4991 0.6029 0.9941

2 8 48 0.2632 0.2674 0.4879 0.5581 0.8340

2 10 60 0.2624 0.2668 0.4867 0.5561 0.8012

2 12 72 0.2621 0.2664 0.4865 0.5556 0.7997

3 2 18 0.4448 0.5868 1.540 1.629 2.483

3 4 36 0.2660 0.2795 0.5700 0.7724 1.455

3 6 54 0.2513 0.2605 0.4648 0.5631 0.9102

3 8 72 0.2493 0.2546 0.4505 0.5221 0.7833

3 10 90 0.2487 0.2537 0.4494 0.5184 0.7585

3 12 108 0.2486 0.2536 0.4493 0.5181 0.7543

4 2 24 0.4438 0.5809 1.540 1.628 2.481

4 4 48 0.2648 0.2782 0.5633 0.7580 1.451

4 6 72 0.2490 0.2565 0.4617 0.5530 0.8951

4 8 96 0.2477 0.2532 0.4459 0.5198 0.7779

4 10 120 0.2473 0.2524 0.4448 0.5149 0.7555

4 12 144 0.2472 0.2522 0.4445 0.5141 0.7495

5 2 30 0.4436 0.5804 1.540 1.628 2.481

5 4 60 0.2647 0.2780 0.5618 0.7532 1.451

5 6 90 0.2487 0.2562 0.4588 0.5503 0.8867

5 8 120 0.2474 0.2528 0.4452 0.5173 0.7669

5 10 150 0.2472 0.2523 0.4444 0.5144 0.7521

5 12 180 0.2471 0.2521 0.4443 0.5139 0.7487

5 13 195 0.2471 0.2521 0.4443 0.5139 0.7480

5 14 210 0.2471 0.2521 0.4443 0.5139 0.7479

6 2 36 0.4436 0.5803 1.540 1.628 2.481

6 4 72 0.2646 0.2777 0.5610 0.7525 1.451

6 6 108 0.2486 0.2560 0.4580 0.5486 0.8853

6 8 144 0.2474 0.2528 0.4451 0.5171 0.7661

6 10 180 0.2472 0.2522 0.4444 0.5142 0.7509

6 12 216 0.2471 0.2521 0.4443 0.5139 0.7484

7 2 42 0.4436 0.5801 1.540 1.628 2.481

7 4 84 0.2645 0.2776 0.5596 0.7513 1.451

7 6 126 0.2486 0.2558 0.4576 0.5484 0.8850

7 8 168 0.2474 0.2527 0.4451 0.5170 0.7643

7 10 210 0.2472 0.2522 0.4444 0.5142 0.7506

TR=Total numbers of polynomial terms used in the r (or c) direction.
TZ=Total numbers of polynomial terms used in the z (or z) direction.
DET=Frequency determinant order.
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frequencies for each configuration are in bold face type, and the numbers in parentheses identify
the sequence of the frequencies. The zero frequencies of rigid body modes are omitted from
the table.
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Table 3

Frequencies in oa
ffiffiffiffiffiffiffiffiffi
r=G

p
of completely free, hyperboloidal shells of revolution with b=a ¼ 1 and Hb=a ¼ 4 for n ¼ 0:3

Ht=Hb ¼ 0 Ht=Hb ¼ 1=4 Ht=Hb ¼ 1

n s h=a ¼ 0:2 h=a ¼ 0:4 h=a ¼ 0:2 h=a ¼ 0:4 h=a ¼ 0:2 h=a ¼ 0:4

0T 1 0.7841 0.7835 0.5547 0.5561 0.1054 0.1067

2 1.298 1.299 0.9701 0.9730 0.7841 0.7836

3 1.872 1.875 1.507 1.511 0.9392 0.9408

4 2.469 2.473 2.024 2.028 1.298 1.299

5 3.074 3.077 2.527 2.532 1.555 1.558

0A 1 0.3140 0.3255 0.3098 0.3193 0.2400 0.2416

2 0.4207 0.4792 0.4087 0.4598 0.3140 0.3255

3 0.5615 0.6950 0.5438 0.6708 0.3474 0.3779

4 0.7183 0.8687 0.7008 0.8124 0.4207 0.4792

5 0.8623 1.027 0.8076 0.9310 0.4814 0.5763

1 1 0.3285 0.3520 0.3126 0.3265 0.09520 0.09967(3)

2 0.4450 0.5240 0.3966 0.4494 0.2779 0.2845

3 0.5782 0.6053 0.5080 0.5448 0.3374 0.3706

4 0.6111 0.7449 0.5515 0.6489 0.3629 0.3952

5 0.7456 0.8966 0.6625 0.7332 0.4594 0.5256

2 1 0.02871(1) 0.04991(1) 0.03376(1) 0.05482(1) 0.03301(1) 0.05560(1)

2 0.1200(4) 0.2016(4) 0.1383(5) 0.2168(4) 0.03695(2) 0.05589(2)

3 0.3303 0.4294 0.3296 0.4432 0.1490 0.2184

4 0.4505 0.6143 0.4130 0.5107 0.1986 0.2469

5 0.6003 0.7106 0.4493 0.6512 0.3510 0.4623

3 1 0.05879(2) 0.1021(2) 0.05922(2) 0.1023(2) 0.05887(3) 0.1021(4)

2 0.1924 0.3176 0.1971 0.3202 0.05973(4) 0.1024(5)

3 0.3757 0.5937 0.3825 0.6014 0.1952 0.3190

4 0.5333 0.8583 0.5300 0.8636 0.2000 0.3219

5 0.7070 0.9123 0.6052 0.9014 0.3786 0.5973

4 1 0.09140(3) 0.1687(3) 0.09141(3) 0.1687(3) 0.09141(5) 0.1687

2 0.2482 0.4379 0.2484 0.4380 0.09141 0.1687

3 0.4443 0.7584 0.4454 0.7595 0.2484 0.4380

4 0.6416 1.087 0.6455 1.090 0.2485 0.4381

5 0.8654 1.130 0.8595 1.132 0.4452 0.7592

5 1 0.1339(5) 0.2524(5) 0.1339(4) 0.2524(5) 0.1339 0.2524

2 0.3172 0.5768 0.3172 0.5769 0.1339 0.2524

3 0.5315 0.9359 0.5317 0.9361 0.3172 0.5768

4 0.7580 1.308 0.7586 1.309 0.3172 0.5769

5 1.013 1.356 1.019 1.357 0.5316 0.9360

T=torsional mode; A=axisymmetric mode.

Numbers in parentheses identify frequency sequence.
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From Tables 3–5, for each configuration of Figs. 2–4, the following observations are noted:
1.
 The bending modes for n=2 are seen to be the most significant, having two or three such modes
among the first five frequencies, including the fundamental one, while the axisymmetric mode
frequencies (n ¼ 0A) are all higher.
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Table 4

Frequencies in oa
ffiffiffiffiffiffiffiffiffi
r=G

p
of completely free, hyperboloidal shells of revolution with b=a ¼ 2 and Hb=a ¼ 4 for n ¼ 0:3

Ht=Hb ¼ 0 Ht=Hb ¼ 1=4 Ht=Hb ¼ 1

n s h=a ¼ 0:2 h=a ¼ 0:4 h=a ¼ 0:2 h=a ¼ 0:4 h=a ¼ 0:2 h=a ¼ 0:4

0T 1 0.7922 0.7915 0.5775 0.5776 0.2061(5) 0.2077(3)

2 1.500 1.501 1.182 1.184 0.7922 0.7915

3 2.241 2.243 1.795 1.796 1.124 1.125

4 2.985 2.987 2.399 2.401 1.500 1.501

5 3.730 3.731 3.002 3.004 1.869 1.872

0A 1 0.6939 0.7060 0.6794 0.6876 0.4766 0.4776

2 0.8641 0.9372 0.8289 0.8838 0.6939 0.7060

3 1.094 1.252 1.025 1.106 0.7315 0.7570

4 1.311 1.324 1.170 1.275 0.8641 0.9375

5 1.330 1.528 1.315 1.503 0.9245 1.009

1 1 0.6570 0.6821 0.5154 0.5267(4) 0.2080 0.2126(4)

2 0.7778 0.7930 0.7317 0.7410 0.4547 0.4640

3 0.8816 1.007 0.7685 0.8391 0.6956 0.7332

4 1.112 1.169 0.9765 1.130 0.7192 0.7402

5 1.189 1.377 1.145 1.178 0.8077 0.8371

2 1 0.08463(1) 0.1531(1) 0.09176(1) 0.1584(1) 0.09133(1) 0.1576(1)

2 0.2037(3) 0.3707(3) 0.2177(3) 0.3857(3) 0.1004(2) 0.1625(2)

3 0.4774 0.6491(5) 0.3485(5) 0.5287(5) 0.2265 0.3844

4 0.7565 1.007 0.5830 0.7906 0.2738 0.4162

5 1.053 1.145 0.8378 1.142 0.4942 0.6773

3 1 0.1947(2) 0.3531(2) 0.1950(2) 0.3532(2) 0.1949(3) 0.3532(5)

2 0.4269(5) 0.7404 0.4309 0.7427 0.1952(4) 0.3533

3 0.6752 1.129 0.6852 1.145 0.4281 0.7416

4 0.8507 1.365 0.7157 1.195 0.4351 0.7445

5 1.135 1.545 0.9278 1.474 0.6937 1.143

4 1 0.3320(4) 0.6065(4) 0.3320(4) 0.6065 0.3320 0.6066

2 0.6482 1.120 0.6484 1.121 0.3320 0.6066

3 0.9778 1.618 0.9806 1.621 0.6484 1.121

4 1.233 1.942 1.205 1.944 0.6486 1.121

5 1.430 2.027 1.265 1.975 0.9797 1.623

5 1 0.5043 0.9047 0.5043 0.9048 0.5044 0.9048

2 0.9012 1.528 0.9013 1.528 0.5044 0.9049

3 1.287 2.090 1.287 2.090 0.9013 1.528

4 1.639 2.371 1.642 2.371 0.9014 1.528

5 1.927 2.606 1.817 2.610 1.287 2.091

T=torsional mode; A=axisymmetric mode.

Numbers in parentheses identify frequency sequence.
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2.
 As the shell thickness ratio (h/a) becomes larger, all the frequencies are increased except
for the first torsional modes (n=0T) for Ht=Hb ¼ 0 and the second torsional ones for
Ht=Hb ¼ 1:
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Table 5

Frequencies in oa
ffiffiffiffiffiffiffiffiffi
r=G

p
of completely free, hyperboloidal shells of revolution with b=a ¼ 3 and Hb=a ¼ 4 for n ¼ 0:3

Ht=Hb ¼ 0 Ht=Hb ¼ 1=4 Ht=Hb ¼ 1

n s h=a ¼ 0:2 h=a ¼ 0:4 h=a ¼ 0:2 h=a ¼ 0:4 h=a ¼ 0:2 h=a ¼ 0:4

0T 1 0.7689 0.7686(5) 0.5801 0.5803(5) 0.2697(5) 0.2712(4)

2 1.540 1.540 1.222 1.222 0.7689 0.7686

3 2.314 2.315 1.848 1.849 1.151 1.152

4 3.088 3.088 2.471 2.472 1.540 1.540

5 3.861 3.861 3.093 3.094 1.927 1.928

0A 1 0.9515 0.9596 0.8895 0.8913 0.5525 0.5528

2 1.096 1.142 1.023 1.049 0.9515 0.9596

3 1.294 1.383 1.205 1.276 0.9858 1.003

4 1.454 1.516 1.387 1.496 1.096 1.142

5 1.523 1.606 1.522 1.577 1.167 1.238

1 1 0.7620 0.7842 0.5649(5) 0.5763(4) 0.2514(4) 0.2559(3)

2 0.8613 0.8728 0.8054 0.8199 0.5206 0.5313

3 1.072 1.191 0.9711 1.026 0.7996 0.8290

4 1.305 1.392 1.146 1.262 0.8538 0.8637

5 1.418 1.579 1.297 1.393 0.9678 0.9839

2 1 0.1320(1) 0.2443(1) 0.1373(1) 0.2482(1) 0.1358(1) 0.2471(1)

2 0.2362(2) 0.4395(2) 0.2427(2) 0.4502(2) 0.1482(2) 0.2521(2)

3 0.4981(4) 0.6899(4) 0.3647(4) 0.5604(3) 0.2395(3) 0.4443(5)

4 0.8641 1.132 0.6599 0.8884 0.3361 0.5139

5 1.227 1.435 0.9731 1.296 0.5447 0.7479

3 1 0.3246(3) 0.5907(3) 0.3248(3) 0.5908 0.3248 0.5908

2 0.5654 0.9854 0.5690 0.9881 0.3249 0.5908

3 0.7318 1.249 0.7003 1.220 0.5684 0.9879

4 0.9606 1.508 0.8198 1.347 0.5711 0.9889

5 1.315 1.925 1.066 1.654 0.7434 1.266

4 1 0.5734(5) 1.018 0.5734 1.018 0.5735 1.018

2 0.9222 1.552 0.9225 1.552 0.5735 1.019

3 1.203 1.971 1.211 1.979 0.9224 1.552

4 1.359 2.187 1.271 2.086 0.9227 1.552

5 1.632 2.458 1.454 2.295 1.208 1.976

5 1 0.8787 1.504 0.8788 1.504 0.8789 1.504

2 1.327 2.147 1.327 2.147 0.8790 1.504

3 1.690 2.647 1.691 2.648 1.327 2.147

4 1.945 2.981 1.924 2.982 1.327 2.147

5 2.127 3.102 1.991 3.011 1.692 2.649

T=torsional mode; A=axisymmetric mode.

Numbers in parentheses identify frequency sequence.
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3.
 As the curvature becomes larger (i.e., as b/a becomes smaller), most of the frequencies are
decreased (for a fixed inner radius a).
4.
 As the curvature becomes smaller and shell thickness becomes thicker, the torsional modes
(n=0T) and bending modes for n=1 become more significant.
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Fig. 3. Hyperboloidal shells of revolution for b=a ¼ 2 and Hb=a ¼ 4:
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5.
 When hyperboloidal shells of revolution without a top portion (Ht=Hb ¼ 0) are compared
with ones with a small top portion (Ht=Hb ¼ 1=4), the frequencies for higher circumferential
wave number (nX2) are not much different, while the frequencies for nX1 have a large
difference.
6.
 For each configuration with Ht=Hb ¼ 1 and for nX3; the first and second frequencies are
nearly the same, as are the third and fourth ones. These similarities are seen to a lesser extent
for n=2, but become stronger as n increases.
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Fig. 4. Hyperboloidal shells of revolution for b=a ¼ 3 and Hb=a ¼ 4:

J.-H. Kang, A.W. Leissa / Journal of Sound and Vibration 282 (2005) 277–296 291
7.
 As the curvature becomes greater (decreasing b/a) and thickness decreases, frequencies for
higher Fourier components (n42) become more significant.

5. Cylindrical and nearly cylindrical shells

It would be interesting to compare the frequencies of the longitudinally symmetric (Ht=Hb ¼ 1)
hyperboloidal shells with those of circular cylindrical shells having the same middle radius (a),
length (H) and thickness (h). The latter shells are obtained in the present analysis by letting b/a-
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Table 6

Frequencies in oa
ffiffiffiffiffiffiffiffiffi
r=G

p
for nearly cylindrical (b=a ¼ 10) and cylindrical (b=a ¼ 1000) shells with H=a ¼ 8 for n ¼ 0:3

b=a ¼ 10 b=a ¼ 1000

n s h=a ¼ 0:2 h=a ¼ 0:4 h=a ¼ 0:2 h=a ¼ 0:4

0T 1 0.3749(5) 0.3752(2) 0.3927(5) 0.3927(2)

2 0.7774 0.7776 0.7854 0.7854

3 1.173 1.173 1.178 1.178

4 1.567 1.567 1.571 1.571

5 1.960 1.960 1.964 1.964

0A 1 0.6195 0.6194 0.6281 0.6280

2 1.194 1.194 1.201 1.201

3 1.470 1.478 1.506 1.515

4 1.505 1.514 1.579 1.597

5 1.519 1.535 1.603 1.618

1 1 0.2968(4) 0.3013(1) 0.3030(3) 0.3075(1)

2 0.5861 0.5984 0.5940 0.6065

3 0.8649 0.8934 0.8729 0.9018

4 0.9802 1.000 0.9970 1.018

5 1.160 1.191 1.184 1.220

2 1 0.2392(1) 0.4523(3) 0.2557(1) 0.4849(3)

2 0.2411(2) 0.4533(4) 0.2615(2) 0.4937(4)

3 0.2931(3) 0.5233(5) 0.3095(4) 0.5466(5)

4 0.4240 0.6509 0.4395 0.6761

5 0.6168 0.8592 0.6294 0.8808

3 1 0.6444 1.146 0.7011 1.245

2 0.6445 1.146 0.7081 1.254

3 0.7171 1.264 0.7405 1.298

4 0.7693 1.325 0.8041 1.378

5 0.8710 1.448 0.9058 1.501

4 1 1.177 1.966 1.292 2.144

2 1.178 1.967 1.298 2.150

3 1.297 2.146 1.330 2.192

4 1.329 2.179 1.384 2.258

5 1.407 2.275 1.464 2.355

5 1 1.812 2.851 1.994 3.110

2 1.813 2.852 2.000 3.114

3 1.985 3.089 2.031 3.155

4 2.003 3.104 2.082 3.211

5 2.076 3.193 2.153 3.293

T=torsional mode; A=axisymmetric mode.

Numbers in parentheses identify frequency sequence.
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N. It is noted that cylindrical shells are of zero Gaussian curvature while hyperboloidal shells
have negative Gaussian curvature.
Table 6 presents oa

ffiffiffiffiffiffiffiffiffi
r=G

p
for hyperboloidal shells having b=a ¼ 1000: These are essentially

cylindrical. Let the R be the shell radius (r) at z ¼ �H=2 (Fig. 1); i.e., at the ends of the shell. How
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nearly a hyperboloidal shell is cylindrical is clearly seen by examining the ratio of this radius to the
middle radius; i.e., R=a: From the equation for the hyperbolic mid-surface one obtains

R

a

� �2

¼ 1þ
H

2b

� �2

¼ 1þ
H

2a

� �2
a

b

� �2

: ð20Þ

For H=a ¼ 8; which corresponds to the Hb=a ¼ 4 used in Tables 3–5, Eq. (20) becomes

R

a

� �2

¼ 1þ 16
a

b

� �2

: ð21Þ

Thus, using b=a ¼ 1000 for Table 6 in Eq. (21) gives R=a ¼ 1:000008: Since the outer radius (R)
and middle one (a) are then essentially the same, the shell is essentially cylindrical.
At the same time, it is easy to demonstrate to what extent the presence of a small meridional

curvature may change the frequencies of a cylindrical shell, which has circumferential curvature
(radius of curvature a). For this purpose, results are also shown in Table 6 for b=a ¼ 10: From Eq.
(21), this corresponds to a shell radius R at the outer ends of this slightly hyperboloidal (nearly
cylindrical) shell, which is 1.077 times the middle radius (a).
In Table 6, one sees that the presence of a small meridional curvature (b=a ¼ 10) causes the

following changes in the frequencies, compared to those of a cylindrical shell (b=a ¼ 1000):
1.
 All frequencies are decreased.

2.
 The axisymmetric (n=0A) and first flexural (n=1) mode frequencies change very little (o2%).

3.
 Torsional frequencies change more (o4%).

4.
 Significant changes occur for the higher flexural modes (n41); for example, a frequency

decrease of 9.1% is seen for n=5 when h/a=0.2.

The trends described above are extendable further to increasing the meridional curvature by
comparing directly with the data for b/a=3 (Table 5, with Ht=Hb ¼ 1).
It is interesting to note that the nearly degenerate (equal frequency) modes observed in Tables

3–5 for n42 and Ht=Hb ¼ 1 become more separated in Table 6 as the shell becomes more nearly
cylindrical.
To establish further the accuracy of representing a cylindrical shell by b/a=1000, Table 7 is

added, which compares oa
ffiffiffiffiffiffiffiffiffi
r=G

p
obtained by the present method with accurate values obtained

by a 3-D analysis carried out in cylindrical coordinates [27]. The accuracy of the latter method was
partly established in Ref. [27] by comparison with results obtained by others, using other
analytical methods, and experimentally. In Table 7, frequencies are presented for h=a ¼ 2=19
(E0.1053), and for two H=a ratios, 40/19(E2.105) and 200/19(E10.53). One sees close agreement
between the results for b=a ¼ 1000 and the hollow cylinders.
6. Conclusions

Accurate frequency data determined by the 3-D Ritz analysis have been presented for thick
hyperboloidal shells of revolution. The analysis uses the 3-D dynamic equations of the theory of
elasticity in their general forms for isotropic materials. They are only limited to small strains. No
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Table 7

Comparison of present method (b=a ¼ 1000) and 3-D hollow cylinder [27] frequencies oa
ffiffiffiffiffiffiffiffiffi
r=G

p
; for h=a ¼ 2=19

(E0.1053), n ¼ 0:3

H=a ¼ 40=19 (E2.105) H=a ¼ 200=19 (E10.53)

n s b=a ¼ 1000 Cylinder [27] b=a ¼ 1000 Cylinder [27]

0T 1 1.492 1.492 0.2984 0.2985

2 2.985 2.985 0.5969 0.5969

3 4.477 4.477 0.8954 0.8954

4 5.969 5.969 1.194 1.194

5 7.462 7.461 1.492 1.492

0A 1 1.564 1.564 0.4791 0.4792

2 1.606 1.606 0.9408 0.9409

3 1.622 1.622 1.325 1.325

4 1.732 1.732 1.509 1.509

5 2.060 2.060 1.565 1.564

1 1 1.229 1.229 0.1917 0.1917

2 1.410 1.410 0.4127 0.4127

3 1.681 1.681 0.6403 0.6403

4 2.049 2.049 0.8318 0.8318

5 2.057 2.057 0.9946 0.9946

2 1 0.1356 0.1356 0.1367 0.1367

2 0.1759 0.1759 0.1385 0.1385

3 1.035 1.035 0.1623 0.1623

4 1.507 1.507 0.2401 0.2400

5 1.872 1.872 0.3634 0.3633

3 1 0.3799 0.3799 0.3830 0.3830

2 0.4430 0.4429 0.3853 0.3852

3 0.9163 0.9162 0.3971 0.3970

4 1.504 1.503 0.4229 0.4227

5 2.140 2.138 0.4691 0.4688

4 1 0.7195 0.7195 0.7251 0.7250

2 0.7909 0.7909 0.7272 0.7270

3 1.114 1.113 0.7389 0.7388

4 1.661 1.659 0.7591 0.7589

5 2.324 2.322 0.7899 0.7896

5 1 1.146 1.146 1.154 1.154

2 1.220 1.219 1.156 1.156

3 1.500 1.498 1.169 1.168

4 1.988 1.986 1.188 1.187

5 2.635 2.633 1.216 1.215

T=torsional mode; A=axisymmetric mode.
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other constraints are placed upon the displacements. This is in stark contrast with the classical
2-D shell theories, which make very limiting assumptions about the displacement variation
through the thickness.
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Convergence of the method was demonstrated by obtaining frequencies to four significant
figures of exactitude for a typical Fourier component (n=2), which includes the fundamental
frequency, of two representative hyperboloidal shells of revolution that are completely free. The
method was then used to compute accurate and extensive frequencies for three sets of completely
free, hyperboloidal shells of revolution, which are of large (b=a ¼ 1), moderate (b=a ¼ 2), and
small (b=a ¼ 3) curvatures. This type of problem has no known solution in the published
literature.
The energy formulation using the Ritz method is a particularly good approach for structural

problems to find static displacements, free vibration frequencies and mode shapes, and buckling
loads and mode shapes. Accurate stress determination by the method is questionable in 3-D
analyses, however, especially for shapes having large stress gradients (sharp internal corners,
cracks, etc.) because the stresses involve derivatives of the displacements.
Although correctly developed and properly used finite element methods can obtain reasonably

accurate frequencies, even in 3-D representations, they typically require many more degrees of
freedom (i.e., much larger sizes of eigenvalue determinants to evaluate) to achieve comparable
accuracy. This was demonstrated extensively in a paper by McGee and Leissa [26]. The Ritz
method guarantees upper bound convergence of the frequencies in terms of functions sets that are
mathematically complete, such as algebraic polynomials. Some finite element methods can also
accomplish this, but at much greater costs, and others cannot.
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